Pathophysiological and behavioral deficits in developing mice following rotational acceleration-deceleration traumatic brain injury
نویسندگان
چکیده
Abusive head trauma (AHT) is the leading cause of death from trauma in infants and young children. An AHT animal model was developed on 12-day-old mice subjected to 90° head extension-flexion sagittal shaking repeated 30, 60, 80 and 100 times. The mortality and time until return of consciousness were dependent on the number of repeats and severity of the injury. Following 60 episodes of repeated head shakings, the pups demonstrated apnea and/or bradycardia immediately after injury. Acute oxygen desaturation was observed by pulse oximetry during respiratory and cardiac suppression. The cerebral blood perfusion was assessed by laser speckle contrast analysis (LASCA) using a PeriCam PSI system. There was a severe reduction in cerebral blood perfusion immediately after the trauma that did not significantly improve within 24 h. The injured mice began to experience reversible sensorimotor function at 9 days postinjury (dpi), which had completely recovered at 28 dpi. However, cognitive deficits and anxiety-like behavior remained. Subdural/subarachnoid hemorrhage, damage to the brain-blood barrier and parenchymal edema were found in all pups subjected to 60 insults. Proinflammatory response and reactive gliosis were upregulated at 3 dpi. Degenerated neurons were found in the cerebral cortex and olfactory tubercles at 30 dpi. This mouse model of repetitive brain injury by rotational head acceleration-deceleration partially mimics the major pathophysiological and behavioral events that occur in children with AHT. The resultant hypoxia/ischemia suggests a potential mechanism underlying the secondary rotational acceleration-deceleration-induced brain injury in developing mice.
منابع مشابه
Behavioral Outcomes Differ between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury
Mild traumatic brain injury (mTBI) can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time course of behavioral outcomes following blast and rota...
متن کاملNeuropsychological and Neuropsychiatric Deficits Following Traumatic Brain Injury: Common Patterns and Neuropathological Mechanisms
Traumatic Brain Injury (TBI) in all degrees of injury severity mainly induces deviant cognitive, emotional and behavioral alterations that lead to their respective disorders. This brief overview strives to define the variables that determine the risk of occurrence of these disorders and to describe the common patterns of these disorders and their relevant neuropathogenetic mechanism(s). In addi...
متن کاملA Model for Mild Traumatic Brain Injury that Induces Limited Transient Memory Impairment and Increased Levels of Axon Related Serum Biomarkers
Mild traumatic brain injury (mTBI) is one of the most common neuronal insults and can lead to long-term disabilities. mTBI occurs when the head is exposed to a rapid acceleration-deceleration movement triggering axonal injuries. Our limited understanding of the underlying pathological changes makes it difficult to predict the outcome of mTBI. In this study we used a scalable rat model for rotat...
متن کاملA New Model to Produce Sagittal Plane Rotational Induced Diffuse Axonal Injuries
A new in vivo animal model that produces diffuse brain injuries in sagittal plane rearward rotational acceleration has been developed. In this model, the skull of an anesthetized adult rat is tightly secured to a rotating bar. During trauma, the bar is impacted by a striker that causes the bar and the animal head to rotate rearward; the acceleration phase last 0.4 ms and is followed by a rotati...
متن کاملThe direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes.
BACKGROUND The translation of research to clinical application is only as good as the modelling platforms employed. This study sought to improve understanding of mild traumatic brain injury (mTBI), by examining the importance of acceleration and rotational force directions on behavioural and molecular outcomes. It is believed that many symptoms associated with concussive forms of mTBI are relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2018